Chest computed tomography findings in hospitalized COVID-19 patients: a systematic review and meta-analysis

Syed Zaki Muhammad¹, Areeba Ahmed¹, Izza Shahid⁵, Abdullah Khalid⁵, Ritesh G. Menezes⁴, Muhammad Usman Sheikh⁵, Tariq Jamal Siddiqi¹, Muhammad Shariq Usman¹, Faisal Khosa⁶

¹Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan; ²Department of Internal Medicine, Ziauddin Medical University, Karachi, Pakistan; ³Department of Medicine, Baqai Medical University, Karachi, Pakistan; ⁴Department of Pathology, College of Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; ⁵Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA; ⁶Department of Radiology, University of British Columbia, Vancouver, Canada

Most studies evaluating chest computed tomography (CT) features in coronavirus disease 2019 (COVID-19) have been small-sized and have presented varied findings. We aim to systematically review these studies and to conduct a meta-analysis of their results to provide a well-powered assessment of chest CT findings in patients with COVID-19. PubMed and EMBASE databases were systematically searched to identify published studies that evaluated chest CT findings in COVID-19 patients. Data regarding study characteristics and CT findings, including distribution of lesions, the lobe of lung involved, lesion densities, and radiological patterns, were extracted. Arcsine transformed proportions from individual studies were pooled using a random-effects model to derive pooled proportions (PPs) and 95% confidence intervals (CIs). A total of fifty-four studies (n=2693 confirmed COVID-19 patients) were included in the final review. Prevalence of different CT findings varied across studies; however, the most common findings were bilateral pulmonary involvement (PP: 74.1% [68.4%, 79.5%]; I²=85.76%), ground glass opacification (PP: 64.6% [57.6%, 71.4%]; I²=91.52%), involvement of the left lower lobe (PP: 71.2% [58.9%, 82.1%]; I²=90.91%), and subpleural distribution of lesions (PP: 57.2% [39.0%, 74.3%]; I²=93.08%). Multivariate meta-regression revealed a positive association between prevalence of air bronchograms and average age of the population (p=0.013). Bilateral ground glass opacification, a subpleural distribution of lesions, and involvement of the left lower lobe were the most notable chest CT findings in COVID-19 patients.

Keywords: COVID-19, SARS-CoV-2, chest computed tomography, ground glass opacities.

INTRODUCTION

The current pandemic of Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is responsible for a critical and acute respiratory condition in some patients [1, 2]. By May 2020, more than 2 million cases have been reported worldwide, with more than 120,000 reported deaths [3]. Currently, nucleic acid testing by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is considered the gold standard for diagnosing COVID-19. However, this test produces a considerable number of false negatives [4]. High false negatives can lead to misdiagnosis, especially during initial stages where adequate treatment and isolation can help limit disease severity and prevent spread [5]. It has been shown that chest computed tomography (CT) imaging can show typical radiological findings of COVID-19 even before the onset of clinical symptoms [6-8]. It has helped clinicians to
identify COVID-19 patients who initially had negative RT-PCR results [6, 9]. Although several observational studies reporting chest CT findings in COVID-19 patients have been published, most have small patient numbers and varied conclusions regarding the most common CT manifestations of COVID-19. Therefore, we sought to perform a systematic review and meta-analysis of these studies, in an attempt to produce well-powered summary estimates which are generalizable across COVID-19 patients.

Table 1 - Pooled prevalence of chest CT findings (distribution of lesions, lobe involvement, lesion densities, and patterns) in confirmed COVID-19 patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of patients affected</th>
<th>Total number of patients</th>
<th>Pooled percentages % (95% CI, %)</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of lesion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral</td>
<td>1411</td>
<td>1937</td>
<td>74.1 (68.4 - 79.5)</td>
<td>85.76</td>
</tr>
<tr>
<td>Subpleural</td>
<td>299</td>
<td>509</td>
<td>57.2 (39.0 - 74.3)</td>
<td>93.08</td>
</tr>
<tr>
<td>Peripheral</td>
<td>770</td>
<td>1287</td>
<td>57.1 (46.7 - 67.1)</td>
<td>92.42</td>
</tr>
<tr>
<td>Posterior</td>
<td>44</td>
<td>69</td>
<td>37.9 (1.5 - 87.2)</td>
<td>92.38</td>
</tr>
<tr>
<td>Unilateral</td>
<td>216</td>
<td>1048</td>
<td>20.5 (15.0 - 26.6)</td>
<td>77.48</td>
</tr>
<tr>
<td>Central</td>
<td>47</td>
<td>551</td>
<td>8.9 (3.1 - 17.2)</td>
<td>87.84</td>
</tr>
<tr>
<td>Lobe involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLL</td>
<td>500</td>
<td>696</td>
<td>71.2 (58.9 - 82.1)</td>
<td>90.91</td>
</tr>
<tr>
<td>RLL</td>
<td>504</td>
<td>710</td>
<td>66.5 (53.4 - 78.5)</td>
<td>91.45</td>
</tr>
<tr>
<td>LUL</td>
<td>403</td>
<td>681</td>
<td>57.2 (44.4 - 69.4)</td>
<td>90.39</td>
</tr>
<tr>
<td>RUL</td>
<td>385</td>
<td>690</td>
<td>53.1 (41.8 - 64.2)</td>
<td>87.66</td>
</tr>
<tr>
<td>RML</td>
<td>345</td>
<td>736</td>
<td>42.8 (29.1 - 57.1)</td>
<td>93.24</td>
</tr>
<tr>
<td>Lesion density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGO</td>
<td>1541</td>
<td>2416</td>
<td>64.6 (57.6 - 71.4)</td>
<td>91.52</td>
</tr>
<tr>
<td>Mixed</td>
<td>524</td>
<td>1176</td>
<td>43.0 (36.8 - 49.3)</td>
<td>72.56</td>
</tr>
<tr>
<td>Consolidation</td>
<td>615</td>
<td>2037</td>
<td>27.7 (19.1 - 37.1)</td>
<td>95.19</td>
</tr>
<tr>
<td>Patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular changes</td>
<td>312</td>
<td>441</td>
<td>62.9 (45.7 - 78.5)</td>
<td>91.75</td>
</tr>
<tr>
<td>Septal thickening</td>
<td>399</td>
<td>846</td>
<td>40.6 (28.2 - 53.7)</td>
<td>92.74</td>
</tr>
<tr>
<td>Air bronchogram</td>
<td>491</td>
<td>1199</td>
<td>39.7 (29.1 - 50.9)</td>
<td>93.26</td>
</tr>
<tr>
<td>Fibrosis/stripes</td>
<td>200</td>
<td>562</td>
<td>37.2 (21.7 - 54.1)</td>
<td>93.98</td>
</tr>
<tr>
<td>Crazy paving pattern</td>
<td>350</td>
<td>1181</td>
<td>29.0 (19.0 - 40.1)</td>
<td>93.68</td>
</tr>
<tr>
<td>Halo sign</td>
<td>110</td>
<td>380</td>
<td>27.3 (8.8 - 51.2)</td>
<td>95.29</td>
</tr>
<tr>
<td>Spider web design</td>
<td>45</td>
<td>195</td>
<td>22.3 (15.6 - 29.9)</td>
<td>30.55</td>
</tr>
<tr>
<td>Bronchial wall thickening</td>
<td>100</td>
<td>509</td>
<td>19.4 (13.4 - 26.3)</td>
<td>70.88</td>
</tr>
<tr>
<td>Subpleural lines</td>
<td>117</td>
<td>698</td>
<td>15.0 (7.2 - 25.1)</td>
<td>90.81</td>
</tr>
<tr>
<td>Nodules</td>
<td>95</td>
<td>918</td>
<td>11.2 (6.5 - 17.0)</td>
<td>83.28</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>108</td>
<td>1784</td>
<td>5.8 (4.1 - 7.7)</td>
<td>62.31</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>65</td>
<td>1193</td>
<td>5.3 (2.9 - 8.4)</td>
<td>78.11</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>13</td>
<td>394</td>
<td>3.0 (1.3 - 5.4)</td>
<td>33.16</td>
</tr>
</tbody>
</table>

METHODS

This study has been reported in concordance with guidelines provided by the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) [10]. PubMed and EMBASE databases were systematically searched by two independent investigators (SZM and AA) in May 2020. No time or language restrictions were set. All articles retrieved from the initial search were transferred to Endnote Reference Library (Version X9; Clarivate Analytics, Philadelphia, Pennsylvania), where duplicates were identified and removed. Each investigator independently evaluated remaining articles by screening the title and abstract for relevance, followed by reading the full-text to confirm eligibility. The studies were eligible for inclusion if:
1) the full-text paper was available;
2) the study included patients with confirmed COVID-19;
3) reported CT findings.

All editorials and commentaries were excluded. Data regarding study characteristics and CT findings were extracted by two independent investigators (SZM and AA), and discrepancies were solved by discussion and consensus. The following information was extracted: country, study type, sample size, age, and sex. Outcomes of interest regarding CT findings included: distribution of lesion, the lobe of lung involved, lesion densities, and the radiological patterns. OpenMetaAnalyst was used to perform statistical analysis [11]. The CT findings reported in more than one study were presented as proportions. Proportions were subjected to arcsine transformation to stabilize the variance, so that unnecessary weights are avoided for studies with small or large prevalence [12]. Arcsine transformed proportions and corresponding 95% confidence intervals (CIs) from individual studies were pooled using a random-effects model. A p-value <0.05 was considered significant. The heterogeneity was assessed using the I² statistics, and a value >75% was considered as significant [13].

RESULTS

The initial search yielded 759 potential studies. After exclusions based on title and abstract (n=607), we screened 152 full-text studies, of which 54 studies (43 retrospective studies and 11 case series and case reports) were included in the

Figure 1 - Bar chart showing the pooled prevalence of chest CT findings (distribution of lesions, lobe involvement, lesion densities, and patterns) with 95% confidence intervals.
final review [14-67]. These included a total of 2693 confirmed COVID-19 patients. Forty-four studies, including a total of 2676 patients, were meta-analyzed. The remaining ten studies were not included in the meta-analysis due to small sample size (<5 patients) and a high risk of bias; however, they have been included in the qualitative review. Upon meta-analysis, the pooled prevalence of male gender in our population was 52.6% (95% CI 48.8%, 56.4%; I²=66.78%). The imaging manifestations varied across patients, but the most common findings were bilateral pulmonary involvement (PP: 74.1% [68.4%, 79.5%]; I²=85.76%), involvement of left lower lobe (PP: 71.2% [58.9%, 82.1%]; I²=90.91%), ground glass opacification (GGO) (PP: 64.6% [57.6%, 71.4%]; I²=91.52%), and subpleural distribution of lesions (PP: 57.2% [39.0%, 74.3%]; I²=93.08%). The imaging manifestations are detailed in Table 1 and Figure 1. Multivariate meta-regression revealed that the prevalence of air bronchograms had a significant positive correlation with the age of the patients (p=0.013); however, no other CT finding showed such a relation.

DISCUSSION

This systematic review and meta-analysis provides a comprehensive overview of the most notable findings on chest CT in a large cohort of COVID-19 patients. Our pooled analysis of 44 studies demonstrated GGO as the most common lesion density. Lesions were particularly evident in the left lower lobe of the lung, mostly bilateral or subpleural in distribution. The most frequent patterns observed were vascular changes, septal thickening, and air bronchograms, while mediastinal lymphadenopathy, pleural effusion, and pericardial effusion were rarely detected. The prevalence of majority of the findings on chest CT did not vary significantly according to the average age, suggesting that these findings might be found across all age groups. Our results are consistent with previous studies, which similarly reported GGO with bilateral pulmonary involvement as the predominant CT manifestation, even in asymptomatic cases of COVID-19 patients [1, 2, 68]. The early appearance of GGO in chest CT can be due to its pathophysiology. After inhalation, the SARS-CoV-2 virus invades the pulmonary interstitium at the end of the lobular bronchioles spreading to the distal end. The lesion originates in the secondary pulmonary lobule, initially appearing as a round ground-glass appearance on CT, and then expands to appear as confluent GGO [68]. Our results show the left lower lobe of the lung as the most commonly involved pulmonary lobe. Contradictory results have been observed, with multiple studies reporting the right lower lobe more frequently involved [17, 29, 30, 32, 41, 45]. Our results also contrast with the earlier reported SARS virus, where severe consolidation was reported more frequently in the right lung [69, 70]. Moreover, prior studies reported patterns such as pleural effusion and lymphadenopathy to appear on chest CT [25, 52]. Our results, however, conclude vascular changes, septal thickening, and air bronchogram to be the most frequently observed patterns.

Patients with severe disease were generally older and had more underlying health conditions than patients with milder forms [25, 35, 41]. Two studies showed consolidation and bilateral infiltration to be more frequent in patients who died from COVID-19 than patients who survived the disease [56, 57]. This study has a few limitations which should be considered. First, this meta-analysis included observational studies, and findings were not adjusted for baseline characteristics and comorbidities, thus, confounding bias is a possibility. Second, some outcomes had high unexplained statistical heterogeneity. We believe this is likely due to the inclusion of mainly small sized studies, which often produce results that vary around the mean value. Heterogeneity could also be due to differences in patient populations and study settings. Third, it must be noted that study-level meta-regression is mainly exploratory and is prone to ecological bias. Last, while this study provides early insight into CT characteristics of COVID-19 patients, it should not be considered a replacement for large-scale observational studies that are currently awaited.

CONCLUSION

Our systematic review and meta-analysis highlight the prevalence of characteristic CT findings in hospitalized COVID-19 patients. Bilateral ground glass opacification, commonly involving the left
lower lobe, with a subpleural distribution of lesions, were the most predominant manifestation. Common patterns on CT included vascular signs, septal thickening, and air bronchograms. Both the increasing prevalence of COVID-19 and the questionable sensitivity of RT-PCR have likely resulted in a low negative predictive value of this test. This makes awareness of salient CT features of COVID-19 essential for practicing physicians. Identification of these CT features, in conjunction with a classic clinical presentation, can enable physicians to have a high suspicion for COVID-19 in cases where RT-PCR produces a false-negative result.

Funding
None.

Disclosures
Dr. Khosa is the recipient of the National Association of Faculties of Medicine of Canada - May Cohen Equity, Diversity, and Gender Award (2020). Other authors have no relevant disclosures.

REFERENCES
[23] Liu KC, Xu P, Lv WF, Qiu XH, Yao JL, Jin-Feng G.

[54] Li CX, Wu B, Luo F, Zhang N. Clinical study and CT findings of a familial cluster of pneumonia with...