Molecular epidemiology and genetic characterization of *Shigella* in pediatric patients in Iran

Mohammad Mehdi Soltan Dallal\(^1\)\(^2\), Reza Ranjbar\(^3\), Sajad Yaghoubi\(^1\)\(^4\), Zahra Rajabi\(^2\), Farzaneh Aminharati\(^1\), Hamidreza Reza Adeli Behrooz\(^5\)

\(^1\)Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; \(^2\)Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran; \(^3\)Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; \(^4\)Department of Microbiology, Asadabad School of Medical Sciences, Asadabad, Iran; \(^5\)Asadabad Faculty of Medical Sciences, Asadabad, Iran

SUMMARY

Infection with *Shigella* is considered a major cause of morbidity and mortality in children with diarrhea in developing countries, especially in Iran. Due to the importance of country-level epidemiological data, molecular characterization of genetic determinants of *Shigella* spp. is a necessity. The aim of the present study was to investigate the prevalence of integron types, \(\text{bla}_{\text{CTX-M}}\), \(\text{bla}_{\text{SHV}}\), and \(\text{bla}_{\text{TEM}}\) \(\beta\)-lactamase genes of *Shigella* isolates in pediatric patients in Tehran, Iran. In a time period of 18 months from May 2015 to August 2017, 75 *Shigella* spp. were isolated from non-duplicative diarrheal stool specimens in six different hospitals in Tehran. The isolates from patients were further analyzed for their antibiotic susceptibility and extended-spectrum beta-lactamase (ESBL) production. Polymerase chain reaction was performed for amplification of the integrons (I, II, III), TEM, SHV, CTX-M15. The prevalence of *S. sonnei*, *S. flexneri*, *S. dysenteriae* and *S. boydii* were 40 (53.3%), 33 (44%), 1 (1.3%) and 1 (1.3%), respectively. The results of an antimicrobial resistance test showed that the high percentage of resistance to nalidixic acid (NA), ampicillin (AMP) and trimethoprim/sulfamethoxazole (SXT) included 38 (50.6%), 59 (81.3%) and 64 (88%) isolates, respectively. Further results revealed that 52% and 76% of *Shigella* isolates carried intI and intII genes, respectively. In this study, the rates of CTX-M (10.7%), SHV (28%) and TEM (21.3%) were determined, all of which were positive for \(\text{bla}_{\text{CTX-M15}}\). This study showed the high prevalence of multidrug resistant *S. sonnei* and *S. flexneri*. Furthermore, it highlighted the increasing integrons (intI and intII) and ESBL genes, especially \(\text{bla}_{\text{CTX-M15}}\), in *Shigella* isolates.

Keywords: *Shigella*, anti-bacterial agents, diarrhea, ESBLs, integrons.

INTRODUCTION

Shigellosis is a global health problem with signs of gastroenteritis and bacillary dysentery, especially in children less than 5 years old [1, 2]. Approximately 165 million cases and 1.1 million deaths happen annually, with the distribution of these adverse outcomes weighted heavily towards developing countries [2]. Shigellosis in humans is caused by four *Shigella* spp., *S. sonnei*, *S. flexneri*, *S. dysenteriae*, and *S. boydii*. The frequency of different serogroups varies depending on geographic location [2]. Besides the self-limiting period of the infection, antibiotic therapy has been effective in alleviating bacillary dysentery for the past several decades. *Shigella* strains have increasingly acquired resistance to various antimicrobials, such as tetracycline/streptomycin (i.e., in combination),
ampicillin, and trimethoprim/sulfamethoxazole. Elements of antimicrobial resistance in Shigella strains are commonly borne within mobile genetic elements (MGEs) [3]. MGEs may mediate the distribution of resistance factors among species, even genera. The gene-capture systems, or integrons, are conserved sequences (3'-CS and 5'-CS) of bacterial genome that are able to obtain gene cassettes, which can carry antimicrobial resistance elements, by site-specific recombination [4]. The most common classes of integrons are the transferable class I integron followed by class II and class III integrons, respectively [3]. Class I integrons harbor many antimicrobial resistance-determinants cassettes that encode extended spectrum β-lactamase (ESBLs), dihydroflavonol-4-reductase/trimethoprim (dfr), disinfectants and aminoglycoside-modifying enzymes (AMEs), and sulfonamide (sul1) [5, 6]. Class II integrons are frequently present in S. sonnei isolates and their gene cassette arrays are commonly constant, consisting of dfrA1 and aadA1 [6]. These genes confer resistance to trimethoprim and streptomycin, respectively [5]. Class III integrons are located in transposable elements (TEs) and have been described, but the 3'-CS is still not well defined [5].

Resistance to the new cephalosporins is facilitated by production of ESBLs [5]. ESBL production is often related to resistance to other classes of antibiotics, leading to considerable limitations when attempting to treat individuals with ESBL-producing strains of Shigella (or other bacteria) [7]. ESBL-producing Shigella isolates have been related to numerous endemic and epidemic outbreaks throughout Europe [8]. In the United States, such outbreaks have newly been reported in Asia, including in Iran [9-11]. In recent years, the increasing use third-generation cephalosporins (3GC) for treatment of shigellosis can be responsible for emergence of ESBLs producing Shigella sp. [11]. Therefore, understanding about molecular aspect of antimicrobial resistance-confering genetic elements of Shigella species is important because of both epidemiological and clinical indications in developing countries and Iran [8]. The aim of the present study was to investigate the prevalence of integron types, blaCTX-M, and blaSHV and blaTEM β-lactamase genes of Shigella isolates in pediatric patients in Tehran, Iran.

MATERIALS AND METHODS

In this cross-sectional study, 75 out of the 946 samples analyzed were obtained from children with sporadic diarrhea admitted to six teaching/therapeutic centers (Children’s Medical Center and Bahman, Shariati, Valiasr, Imam Khomeini and Mofid Hospitals) during a period of 18 months (from May 2015 to October 2016) in Tehran, Iran. Among these isolates, 11 (14.66%) and 64 (85.33%) were related to hospitalized and non-hospitalized patients, respectively. This study assessed the use of exclusion criteria in sampling after the initial one day of the onset of symptoms, consumption of antibiotics before sampling, samples without a label and questionnaire, and receiving the sample more than three days after collection. The specimens were immediately transferred to Department of Microbiology in Tehran University. For the isolation of Shigella spp., samples were streaked onto Salmonella-Shigella and MacConkey agar plates and incubated at 37 °C for 24 hours. Biochemical identification was performed by standard methods. In order to identify species, serological reactions were done by the slide agglutination test with specific antisera (Denka Saiken, Tokyo, Japan). S. boydii ATCC 9207, S. dysenteriae ATCC 13313, S. sonnei ATCC 1202, and S. flexneri ATCC 9290 were used as quality controls in each test. Antimicrobial susceptibility testing (AST) was done for all Shigella isolates, irrespective of the serotype. Furthermore, 84.4% of the children in this study who resulted positive for one of the four Shigella isolates were non-hospitalized.

Antimicrobial susceptibility testing

In agreement with Clinical and Laboratory Standards Institute (CLSI document M100-S14) guidelines, antimicrobial susceptibility was carried out on the Mueller-Hinton agar plates (Merck Co., Germany) using the Kirby-Bauer (KB) method disc diffusion to the following antimicrobials: gentamicin (GM, 10 µg), chloramphenicol (CHL, 30 µg), nalidixic acid (NA, 30 µg), ciprofloxacin (CP, 5 µg), tetracycline (TET, 30 µg), ampicillin (AMP, 20 µg), imipenem (IPM 10 µg), co-trimoxazole (SXT, 5 µg), ceftotaxime (CTX, 30 µg), cefazidime (CAZ, 30 µg), ceftriaxone (CRO, 30µg) and azithromycin (AZM, 15 µg) (MAST Diagnostics, Mersseyside, UK). ESBL phenotype of Shigella isolates was identified by double disc diffusion synergy test (DDST) method. Briefly, the test was performed using both
Molecular epidemiology of Shigella

cefotaxime (CTX, 30μg) and ceftazidime (CAZ, 30μg) alone and in combination with clavulanic acid. An increase of 5 mm in the zone diameter for either CAZ and/or CTX in combination with CLA in contrast to its zone when used alone was considered as ESBL-producing strains (Figure 1). All ESBL-producer isolates were tested by the Etest (AB Biodisk, Solna, Sweden) to determine the MICs for CAZ and CTX according to CLSI document M100-S14 (12). All ESBLs-producing Shigella isolates were tested for CRO, CAZ and CTX susceptibility by E-test according to the manufacturer’s guidelines (Liofilchem, Italy).

PCR and Multiplex-PCR method

Multiplex-PCR and PCR (int, TEM, SHV, CTXM and Amp-C genes) were performed by the PCR instrument mastercycler gradient (Éppendorf).

Table 1 - Oligonucleotide primer sequences used for the amplification of TEM, SHV and CTX-M integrons and resistance genes.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer Sequence (5’→3’)</th>
<th>Product size (bp)</th>
<th>Annealing Temperature °C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaTEM</td>
<td>F-ATGAGTATTCACACATTICCG</td>
<td>868</td>
<td>55</td>
<td>(20)</td>
</tr>
<tr>
<td></td>
<td>R-CAATTGCCTAAAACTGATGAGG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaSHV</td>
<td>F-AAGATCCACTATCGCCAGCACAG</td>
<td>230</td>
<td>55</td>
<td>(21)</td>
</tr>
<tr>
<td></td>
<td>R-ATTCAGTTCCCTTCCCAGCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaCTX-M1</td>
<td>F- GAC GAT GTC ACT GGC TGA GC</td>
<td>499</td>
<td>55</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>R- AGC GGC AGA CGCTAAATAC A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaCTX-M2</td>
<td>F- GCG ACC TGG TTA ACT ACA ATC C</td>
<td>351</td>
<td>55</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>R- CGGTAGATTTGCCCCT TAA GCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaCTX-M4</td>
<td>F- GCT GGA GAA AAG CAG CGG AG</td>
<td>307</td>
<td>55</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>R- GTA AGC TGA CGC AAC GTC TG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blaCTX-M15</td>
<td>F: CACACGTGGAATTTAGGACT</td>
<td>995</td>
<td>55</td>
<td>(19)</td>
</tr>
<tr>
<td></td>
<td>R: GGGTACTAAAGGCGATAAAACA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M4</td>
<td>F: GCT GGA GAA AAG CAG CGG AG</td>
<td>474</td>
<td>60</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>R: GTA AGC TGA CGC AAC GTC TG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intI1</td>
<td>F- GGGTCAAGGATCTGATTTTCG</td>
<td>483</td>
<td>50</td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td>R- ACAAGGTGATGAAATCATGTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intI2F</td>
<td>F- GCAATGAAAGTGCAACCG</td>
<td>466</td>
<td>50</td>
<td>(16)</td>
</tr>
<tr>
<td></td>
<td>R- ACACGCTTGCTAACCAGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intI3F</td>
<td>F- GCCCTCCGCGCCGACTTTTCAG</td>
<td>980</td>
<td>55</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>R- ACGGATCTGCGGAAACCTGACT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
plex-PCR), 2.0 µl of 10× PCR buffer, 0.6 µl MgCl₂ of extracted template DNA (variable in Multi-
reaction mixture was 20 μl, containing a 1.0 µl blaTEM
genes) and PCR (50 mM), 0.6 µl dNTPs (10 mM), 1 µl of each prim-
er, 0.7 µl of Taq DNA polymerase (5 U/µl) (Am-
plexon Co., Denmark) and 12.1 µl ddH₂O (vari-
er 2016), 75 (7.9%), no repetitive isolates of Shigel-

Antibiotic resistance profile
All strains were screened for resistance to 12 an-
timicrobials and the resistance percentage to GM, IPM, Chl, NA, CP, TET, AMP, SXT, CTX, CAZ, CRO and AZM were 7%, 0%, 50.6%, 4%, 38.6%, 81.3%, 88%, 19.6%, 20%, 24% and 28% respectively, as shown in Figure 2. All isolates were susceptible to IPM. S. flexneri isolates showed high levels of resistance against AMP (81.3%), SXT (88%) and NA (50.6%) while low-level resistance showed to CIP (4%), IPM (0%) and CTX (19.6%). Moreover, 88%, 55% and 81.3% of S. sonnei isolates were resistant to SXT, NA and AMP, respectively (Figure 2). Therefore, all isolates were resistant to three different antibiotics (SXT, AMP, and NA) and the prevalence of multi-drug resistance (MDR) was 91%. DDST using CAZ, CTX in combination with CLA as an inhibitor revealed that, out of 75 Shigel-
la spp. were collected at the six teaching Hospital (Tehran, Iran). The prevalence of S. sonnei, S. flex-
neri, S. dysenteriae and S. boydii were 40 (53.33%), 33 (44.0%), 1 (1.33%) and 1 (1.33%) respectively. Data analysis revealed that 14.66% of the children were hospitalized: seven (17.5%) were related to S. sonnei, 3 (33%) to S. flexneri, and a single case to S. dysenteriae. Shigella sonnei was detected in 12 (30%) patients in the ≤5 years age group and in 28 patients (70%) in the >5 years of age group, while S. flexneri was identified in 17 (51.50%) children in the ≤5 year age group, but this difference was not statistically significant (P=0.16). Twenty-three (57.5%) and ten (30.30%) of males were infected respectively with S. sonnei and S. flexneri.

Distribution of integrons in the Shigella strains
Identification of class I, II and III integrons in all Shigella isolates was performed using MPCR assay (Figure 3). The results revealed that 52% (39/75), 76% (57/75), 33.3% (25/75) of Shigella isolates car-
ried intI, intII and both intI/intII genes. No class III integrons were detected. Class 1 integrons were found in S. sonnei 21 (52.5%) and S. flexneri 18 (54.5%), whereas class 2 integrons were found in a total of 57 (76%) strains: S. sonnei 34 (85%) and S. flexneri 23 (69.7%). Thirty-five (35%) of S. sonnei isolates carrying a class 1 integrin showed an additional class 2 integron. Both class 1 and 2 integrons are present in 11 (33.3%) S. flexneri.

RESULTS
Bacterial isolation
Over an 18-month period (from May 2015 to Oc-
tober 2016), 75 (7.9%), no repetitive isolates of Shigel-
Detection of β-lactamase genes

PCR detection results gave rise to different *bla* genes encoding major ESBLs such as TEM, SHV, and CTX-M (Figure 4). All ESBL producers were positive for *bla*_{CTX-M15}. ESBLs genes amplification test showed that the prevalence of *bla*_{SHV} and *bla*_{TEM} were 37.5% (n; 3) and 25% (n; 2), respectively. The prevalence of SHV and TEM genes in *S. flexneri* were 1 (12.5%) and 1 (12.5%), respectively (Figure 5). Two (25%) and 1 (12.5%) of *S. sonnei* isolates carrying SHV and TEM, genes, respectively.

DISCUSSION

Shigella was recovered from 7.9% of stool during the study. However, other studies conducted in Iran reported the prevalence rates of 3-21.7%
This isolation rate is comparable with studies conducted from Argentina, and Ethiopia that documented rates of 9.7% and 7.5% respectively, but differed from 58% (Bangladesh), 4% (Nepal) and 3.3% (Indonesia) [26-28]. These contrasts may be due, in part, to continuing educational programs at elementary schools, aggressive infection-control measures, and possibly under-reporting of shigellosis cases by general practitioners. In the present study, 68.5%, 31.5% and 2.6% of non-duplicative S. sonnei, S. flexneri and S. dysenteriae serogroups were obtained from the all testes samples, respectively. S. boydii was not found in any of the stool samples. These data are consistent with Orrett et al., Khan et al., and Ranjbar et al. [29-31]. Our results showed that all isolates were susceptible to GM and IPM. 88% and 81.3% of Shigella isolates were resistant to SXT and AMP, respectively. 87.9%, 87.9% and 45.5% of S. flexneri were resistant to AMP, SXT and NA, respectively [31]. In the comparable study by Jafari et al., most Shigella isolates were resistant to AMP (95%) and SXT (91.7%) with greatest antibiotic resistance observed among S. sonnei (60.2% isolates) [32]. Shen and his colleagues showed that 88.0%, 89.2%, 85.5% and 79.5% of S. flexneri were resistant to AMP, NA, TET and SXT, respectively [33]. This conflict may be due to geographical distribution, source of samples and level of hygiene [34]. In different geographic regions of the world, Shigella isolates have become resistant to AMP and SXT, and quinolones such as NA [34]. In the present study, 50.6% of isolates were resistant to NA. It can be considered as a warning factor in drug therapy regimen in our country. From 75 strains in this study, 57 (34 (85%) S. sonnei and 23 (69.7%) S. flexneri) were positive for class 2 integron (int2+) and was the predominant class of integrons. These data are consistent with those of Bakhshi et al. and Ranjbar et al [6, 35]. In accordance with our results and on the basis of Jin et al., and Sow et al., Class 2 integron was the most predominant integron in S. sonnei [36, 37]. In contrast to our study, of 58 S. flexneri isolated from China in the study by Yuan Zhu et al., 91% isolates were MDR and 94.8%, 100% and 94.8% carrying class 1, 2 or both types of integrons, respectively [38]. Distribution of class 1 integrons in our study was 52% (n = 39/75) [52.5% S. sonnei and 54.5% S. flexneri]. In the current study, 8 (10.6%) of ESBL-producing Shigella were obtained in DDST, and all of them were positive for blaCTX-M. The prevalence of blaSHV and blaTEM were 37.5% (n=3 [1 (12.5%) S. flexneri and 2 (25%) S. sonnei]) and 25% (n=2, [1 (12.5%) S. flexneri and 1 (12.5%) S. sonnei]), respectively in ESBL isolates. Previous studies in Iran showed that the blaCTX-M15 was the prevalent ESBL gene among clinical isolates of Shigella [39]. These data are similar to other studies conducted in Turkey and Saudi Arabia [40-42]. The outcome of a high prevalence of ESBL-producing genes in Shigella isolates will have disastrous consequences. Therefore, spread of resistance to 3rd generation cephalosporins to other areas must be managed and reemphasizes the necessity for the application of robust infection-control function

Figure 5 - Distribution of bla gene types and integron genes in 75 Shigella isolates.
and careful use of antibiotics by clinicians in community and in hospitals. In agreement with Ranjbar et al., our results increase the level of concern about the distribution of ESBL among S. sonnei all over the country, because S. sonnei is now the commonest isolated Shigella species in Iran [39]. Shigellosis attributable to S. sonnei can pose a significant concern to patients and presents a challenge for illness management. The high prevalence of ESBL-producing Shigella species imposes a considerable concern to public health in Tehran, Iran [39]. Rigid surveillance policies as well as limits in drug prescription and following antimicrobial drug resistance patterns seems to be needed as the first step along with a judicious use of drugs to minimize the distribution of ESBL-producing Shigella [42]. Therefore, continuous monitoring should be made to prevent further spreading of resistant Shigella species. Finally, a number of potential limitations in this study need to be considered. First, gene cassettes inserted between the conserved segments of the integrons were not studied. In addition, presence of small sample size in our research was another limitation. Therefore, further investigations should be made to assess nucleotide sequences of the gene cassettes with a larger sample size. Taken together, these findings suggest significant prevalence of integrons and resistance gene markers in mobile genetic elements in Shigella spp., circulating in Tehran, Iran. In diarrhea-endemic areas, epidemiological data about the incidence and transmission of resistance genes through bacterial populations play a crucial role in monitoring antimicrobial resistance trends.

ACKNOWLEDGMENTS
This work was supported by a Vice-Chancellor for Research grant (No. 30232), Tehran University of Medical Science (Tehran, IR Iran). We thank to the Children’s Medical Center and Bahman, Shariati, Valiasr, Imam Khomeini and Mofid Hospitals in Tehran for referring isolates and Epidemiological and demographic data for use in this study.

Conflicts of interest
All authors: no conflicts.

REFERENCES
[15] Hisiao K.Y., Lee M.F., Peng C.F. Detection and characterization of class 1 integron-associated gene cas-

